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al, Shanghai Jiaotong University School of Medicine, 1665 Kongjiang
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239 Siping Road, Shanghai 200092, PR China

bstract—Previous studies have demonstrated that merlin
cts as a tumor suppressor by blocking Ras-mediated sig-
aling. However, the mechanism by which merlin controls
ell proliferation has remained obscure. Here we show that
erlin deficient tumors exhibited loss of p21, concomitant
ith elevated CDKs/cyclin D1 levels in sporadic vestibular
chwannomas (VS) from clinic patients. Likewise, silencing
f merlin gene expression in the cell lines resulted in down-
egulation of p21. Furthermore, we find that merlin-enhanced
21 protein stability, rather than increased RNA accumula-
ion, was responsible for the elevated p21 levels. Interest-
ngly, p21 was required to maintain merlin levels and the
nhibitory effect of merlin on Ras signaling was partially over-
idden by knockdown of p21. Consistent with the observation
hat over-expression of merlin arrested cell growth at G1-
hase, the current study indicates that merlin exerts its anti-
roliferative effect, at least in part, by maintaining p21 ex-
ression, and loss of p21 is a prominent feature of merlin
eficient schwannomas. © 2010 IBRO. Published by Elsevier
td. All rights reserved.

ey words: Merlin, p21 (waf1), CDKs, vestibular schwanno-
as.

eurofibromatosis type 2 (NF2) is a cancer predisposition
yndrome phenotypically characterized by the occurrence
f multiple nervous system tumors, such as schwannomas
nd meningiomas (Ferner, 2007). Mutations in the NF2
ene are detected in NF2-related schwannomas, support-

ng its role as a classical tumor suppressor gene (Lepont et
l., 2008). However, the events leading to schwannomas
evelopment are still largely unknown.

The 595-amino-acid NF2 protein, merlin, is homolo-
ous to a subgroup of band 4.1 proteins, ezrin, radixin, and
oesin, collectively known as the ERM protein family. On

he basis of homology of the NF2 protein to the ERM
roteins, it has been postulated that the NF2 protein like-
ise functions as a membrane–cytoskeleton linking pro-

ein (Johnson et al., 2002). Experiments have also dem-

Corresponding author. Tel: �86-21-65986230; fax: �86-21-
5983793.
-mail address: yanjunlu@hotmail.com (Y. Lu).
bbreviations: CDKs, cyclin-dependent kinases; CN, cranial nerve;
k
SCs, human Schwann cells; MN, myelinated nerve; NF2, neurofibro-
atosis type 2; VS, vestibular schwannomas.
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Fnstrated that merlin can mediate contact inhibition of

rowth through interactions with CD44 (Morrison et al.,
001), function as well as in epidermal growth factor re-
eptor (Curto et al., 2007), RhoGTPase (Flaiz et al., 2009),
hosphatidylinositol 3-kinase (Rong et al., 2004), ERK
Ammoun et al., 2008; Meloche and Pouyssegur, 2007),
AK (Kissil et al., 2003), and apoptosis (Schulze et al.,
002). Several evidence have implicated that merlin plays
n important role in the down-regulation of Ras/Rac1 sig-
aling, which involved in suppressing cell growth at G0/G1

Shaw et al., 2001). These cell biology studies have pro-
ided a greater understanding of the role of merlin in
egulating cell growth. However, the mechanism by which
erlin regulates cell proliferation is not well understood.

Cell cycle progression is driven by cyclin-dependent
inases (CDKs) in association with cyclins. The activities of
yclin–CDK complexes are modulated by two classes of
DK inhibitor (CDKIs). The INK4 CDKI proteins sequester
DKs and inhibit the formation of CDK-cyclin complexes,
hereas the p21Cip/p27Kip CDKIs bind to cyclin-CDK
omplexes (Reynisdóttir et al., 1995). P21 (also known as
af1, cip1 or sdi1), which acts primarily as a transcription

arget of p53, is an important cellular checkpoint molecule
or the inhibition of a range of cyclin-CDKs activities. In
revious studies, we and others demonstrated that asso-
iation of p21 with CDK2/CyclinE blocks cell cycle progres-
ion at multiple points (Tang et al., 2006; Lu et al., 1998;
arper et al., 1993).

In the present study, we show that merlin deficiency is
orrelated with the loss of p21 in sporadic vestibular schw-
nnomas (VS). These data are in agreement with the
ode in the cell lines implicate that p21 protein levels is
hysiologically regulated by merlin.

EXPERIMENTAL PROCEDURES

tudy subjects

ive fresh tumors were surgically resected from patients with
poradic VS. All patients were in the Department of Otolaryngol-
gy, Xinhua Hospital, between January 1, 2007 and December
1, 2008. Myelinated nerve (MN) and cranial nerve (CN) VIII (the
art of a cochlear nerve) were harvested from autopsy patients.
thical approval for this study and agreement by all patients were
btained from Xinhua Hospital.

ells and transfection

uman Schwann cells (HSC) were purchased from Sciencell
SC-1700). NIH3T3 cells were cultured in DMEM medium supple-
ented with 10% FBS (Hyclone, Logan, UT, USA). DNA encoding
A tagged wild-type and A518- or D518-mutant-merlin were

indly provided by Dr. D.H. Gutmann (Washington University, St.

s reserved.
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ouis, MO, USA) and Dr. G. H. Xiao (Fox Chase Cancer Center,
hiladelphia, PA, USA). Myc-p21-pcDNA4 expression vector
ere generated as described (Tang et al., 2006). Merlin-target
hRNA sequence against NF2 (#1, GCA GCA AGC ACA ATA
CA T; #2, TGG CCA ACG AAG CAC TGA T) (Striedinger et al.,
008; Okada et al., 2005) and p21 shRNA (#1, CTT CGA CTT
GT CAC CGA G; #2, GAC CAT GTG GAC CTG TCA C) (Gevry
t al., 2007; Marusyk et al., 2007) were cloned into pSUPER-
GFP1 constructs (OligoEngine, Seattle, WA, USA). The pSUPER-
cramble plasmid (gat ccc cTT CTC CGA ACG TGT CAC GTt tca
ga gaA CGT GAC ACG TTC GGA GAA ttt ttg gaa a) was used
s the nonsense control (Pager and Dutch, 2005). Cells were

ransiently transfected with expression constructs using Lipo-
ectamine 2000 reagent (Invitrogen, Carisbad, CA, USA). For
alf-life experiments, cells were treated with MG132 (Beyotime,
iangsu, PR China), an inhibitor of proteasome at a final concen-
ration of 20 �M for 2 h and with EST (CalBiochem-Novabiochem,
a Jolla, CA, USA), a control inhibitor of non-proteasomal pro-

eases at final concentration of 100 �M in ethanol.

estern blotting

he cells were prepared in lysis buffer of MC-CelLytics Kit (Shen-
rgy Biocolor, Shanghai, PR China). The protein content was
etermined using the Bradford calorimetric assay method by Pro-

ein Quantitative Analysis Kit (Shenergy Biocolor). Antibodies
ere used against merlin (sc331; Santa Cruz, CA, USA),
-MEK(9121, Cell Signaling, USA), MEK(9122, Cell Signaling),
-ERK(9106, Cell Signaling), ERK(9102, Cell Signaling), p21
2946, Cell Signaling), CDK2 (PC44, CalBiochem), CDK4 (sc260,
anta Cruz), cyclinD1 (sc20044, Santa Cruz), cyclin E (sc25303,
anta Cruz), HA (05-904, Upstate, USA), Myc (46-0603, Invitro-
en), GAPDH (AG019, Beyotime). Then the blot was incubated
ith a secondary antibody, IRDye 800 conjugated affinity purified
nti-mouse or anti-rabbit IgG (Rockland Immunochemicals, PA,
SA) and detected with Odyssey Infrared Imaging System

LI-CDR Biosciences, NE, USA).

eal-time PCR analysis

otal RNA of cells and tissues was extracted by homogenization
n 1 ml TRIzol reagent (Invitrogen), followed by chloroform re-
xtraction and isopropanol precipitation. The RNA was quantified
ith Eppendorf Biophotometer (Eppendorf, Hamburg, Germany).
otal RNA was reverse transcribed using PrimeScriptTM RT re-
gent Kit (DRR037A, Takara, Japan). Real-time PCR was done in
final volume of 20 �l containing 1.6 �l of each cDNA template,

.4 �l of each primer (10 �M), and 10 �l of a SYBR Green master
ix (2�) (Takara). Primers were synthesized (Sangon Bio-tech-
ology, PR China) as: 5=-GGC AGA CCA GCA TGA CAG ATT-3=
sense) and 5=-GCG GAT TAG GGC TTCC TCT T-3= (antisense)
or p21 (waf/cip1); 5=-CGC CCA TGA ACC CAA TTC-3= (sense)
nd 5=-GGC TGT CAC CAA TGA GGT TGA-3= (antisense) for
F2 (merlin); 5=-GAA ATC CCA TCA CCA TCT TCC AGG-3=

sense) and 5=-GAG CCC CAG CCT TCT CCA TG-3= (antisense)
or human GAPDH. The average of p21 and NF2 genes was
ormalized to GAPDH as endogenous housekeeping gene.

ell cycle pattern analysis

ells were washed twice with PBS, trypsinized and resuspended
n PBS containing 0.1% Triton X-100 and RNase (1 mg/ml)
Sigma, St. Louis, MO, USA). The cell suspension was incubated
t 37 °C for 30 min. Propidium iodide (Molecular Probes, Inc.
ugene, OR, USA) was added at a final concentration of 50 �g/ml
nd the cell suspension was kept at 4 °C for 1 h. The cells were
ltered and the cell cycle was analyzed by flow cytometry with the

ACScan system (Becton Dickinson, NJ, USA). f
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mmunohistochemistry

our-�m-thick sections were deparaffinized and dehydrated, and
hen treated with methanol containing 0.3% H2O2 for 5 min to
nhibit endogenous peroxidase. Sections were washed in PBS (pH
.2), immersed in citric acid buffer (pH 6.0), microwaved for 5 min
or antigen recovery and washed in PBS again. Primary anti-p21
onoclonal antibody (diluted 1:100; 2946, Cell Signaling) was

ncubated at 4 °C overnight. Then, the slides were treated with
iotinylated secondary antibody. Finally, the slides were treated
ith horseradish peroxidase-labeled streptavidin for 10 min. As a
hromogen, 3,3-diaminobenzidine tetrahydrochloride was used,
nd the sections were counterstained with Hematoxylin.

RESULTS

erlin deficiency is accompanied by loss of p21 in
poradic vestibular schwannomas

ecent studies have shed considerable light into the cause
f VS. Merlin is commonly lost in VS, concomitant with
isplayed heightened Ras/Rac signal transduction. Some
tudies have shown that merlin may control cell prolifera-
ion by interfering with cell cycle progression (Xiao et al.,
005). P21 is considered the most important cell cycle
heckpoint protein. That led us to ask if p21 was involved

n merlin deficient tumor formation. We first examined mer-
in and p21 expression in sporadic VS, and human normal

N or HSC as controls by Western blotting analysis. As
een in Fig. 1A above, merlin and p21 protein levels in
poradic VS specimens were much lower than in MN and
SC. Furthermore, loss of p21 expression (�5% immuno-
taining) was detected in the VS specimen by immunohis-
ochemistry, as compared to human CN VIII (Fig. 1A bot-
om). These results suggest that the loss of physiologic
evels of p21 is well correlated with merlin deficiency in
poradic VS.

We then evaluated p21 mRNA by real-time RT-PCR
qPCR) analysis to determine whether mRNA accumula-
ion contributed to elevated p21 levels in VSs and control.
n contrast to the large differences in protein levels, p21
RNA levels were modestly different between VS tumors
nd human normal MN (Fig. 1B).

P21 inhibits cell proliferation in part by suppressing the
xpression of CDKs/cyclins. To examine this point, the

evels of CDK2, CDK4, cyclin D1 and cyclin E were mea-
ured by Western blotting in VS specimens and control.
igh levels of CDK2, CDK4 and cyclin D1 were detected in

he VS specimens, whereas cyclin E expression was com-
arable between VS specimens and MN (Fig. 1C). These
esults are consistent with our previous finding that p21
uppressed cell growth by arresting cell cycle at G1 or G2
hase through binding and inhibition of CDK2/4 activity
Tang et al., 2006; Lu et al., 1996, 1998, 2000; Ma et al.,
008), and suggest that the loss of p21 may be causative
or tumor formation in merlin deficient cells.

erlin regulates p21 expression in cell line

o examine the role of merlin in p21 expression, we used
erlin-targeted (NF2) shRNA to silence merlin expression

n NIH3T3 and HSCs. As seen in Fig. 2A, B, cells trans-

ected with merlin-targeted (NF2) shRNAs showed a

f1) in merlin deficient sporadic vestibular schwannomas,
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trong reduction of endogenous merlin expression, accom-
anied by a significant decrease in p21 protein level com-
ared to the cells without reduction of merlin expression.
hese data suggested that the level of p21 protein is
hysiologically regulated by merlin in the cells.

P21 inhibits cell proliferation by suppressing the ex-
ression of CDKs/cyclins. To examine this point, the levels
f CDK2, CDK4, cyclin D1 and cyclin E were measured by
estern blotting in NIH3T3 cells. High levels of CDK2,
DK4 and cyclin D1, cyclin E were detected in the cells

ransfected with merlin-targeted (NF2) shRNA1, as com-
ared to the cells transfected with the nonsense control
Fig. 2C).

Reciprocally, the over-expression of merlin (NF2) in
IH3T3 and HSCs increased endogenous p21 protein

ig. 1. Loss of p21 correlated with merlin deficient in VS. P21 and
erlin protein levels were assessed by Western blotting analysis (A,
bove) or p21 protein levels were assessed by immunohistochemistry
t 40�magnification (A, bottom), or p21 mRNA expression was deter-
ined by real-time PCR, normalized to GAPDH expression (B), or
estern blotting analysis was performed to assess CDK2, CDK4,
yclinD1 and cyclin E protein levels (C) in sporadic VSs and human
ormal (MN), CN VIII or HSC as controls. For interpretation of the
eferences to color in this figure legend, the reader is referred to the

eb version of this article.
evels (Fig. 3A, B). P21 inhibits CDKs/cyclins activities to
l
o
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lock cell cycle progression at G1-phase. To examine the
lteration in the cell cycle pattern of NIH3T3 cells trans-
ected with merlin expression vector, the flow cytometry
nalysis was carried out. As expected, a fraction of G1-
hase cells was increased after over-expression of merlin,
s compared to the cells with control vector (Fig. 3C).
hus, we suggested that the cell cycle underwent to arrest
t G1-phase induced by merlin.

We then evaluated p21 mRNA by real-time RT-PCR
qPCR) analysis to determine whether mRNA accumula-
ion contributed to elevated p21 levels. In contrast to the
arge differences in protein levels, p21 mRNA levels were

odestly different between merlin-transfected cells and
he control cells (Fig. 3D left). More, no significant effect of
erlin-targeted (NF2) shRNA1 on p21 mRNA level was

onfirmed in the cells (Fig. 3D right). Therefore p21 levels
ere elevated mainly due to the protein stabilization other

han mRNA accumulation.
The effect of merlin on p21 protein levels was con-

rmed by co-expression of ectopic Myc-tagged p21 and
A-tagged wild-type merlin, A518- or D518-mutant-merlin.
erlin is phosphorylated at Ser518 by Rac/PAK signaling.

t has been shown that the A518 phosphorylation-defective
orm of merlin inhibits Ras or Rac-induced activation as
ell as or better than the wild-type protein. D518 phos-
horylated form of merlin is growth permissive and there-
ore represents the functionally inactive tumor suppressor
Kim et al., 2002). Immunoblot analyses showed strong
ctopic Myc-p21 expression in wild-type and A518 merlin
ransfected cells (lane 4 and 5), but not in D518 phosphor-
lated form of merlin (lane 3), as compared to transfected
ith Myc-tagged p21 alone in NIH3T3 cells, (lane 2, Fig.

ig. 2. Merlin regulated p21 expression in the cell lines. Western
lotting analysis was performed to assess merlin and p21 levels after

ransfected with merlin-targeted (NF2) shRNA1 and 2 or nonsense
ontrol for 48 h in NIH3T3 cells (A), or in HSCs (B). Expression of

evels of p21, CDK2, CDK4, cyclinD1 and cyclin E were assessed with
r without merlin-targeted (NF2) shRNA1 in NIH3T3 cells (C).

f1) in merlin deficient sporadic vestibular schwannomas,
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E). In addition, to check the transfection efficiency among
he samples, we used plasmid expressing non-relevant
rotein GFP to co-transfect with wild-type merlin, A518- or
518-mutant-merlin into the cells, and the results showed

hat they had the same transfection rate (data not shown).
hus, the data suggested that the A518 mutant can act as
constitutively active form of merlin as well as wild-type

rotein in regulation of p21, but not D518 tumor type
erlin. The elevation of p21 protein level was also ob-

erved in the presence of the proteasome inhibitor MG-132
lane 6, Fig. 3E). These data suggest that merlin causes
he accumulation of p21 protein levels possibly through the
nhibition of proteasome-mediated protein degradation.

21 promotes merlin elevation in NIH3T3 cells

o further explore the relationship between merlin and
21, we next examined the effect of p21 on merlin levels in

he cell lines. As seen in Fig. 4A, B, the endogenous merlin
rotein levels were increased following p21 over-expres-
ion in both NIH3T3 and HSCs. This effect was confirmed

ig. 3. Merlin increased p21 accumulation in a proteasome-dependen
erlin (NF2) for 48 h. Merlin and p21 protein levels were measured by
nalysis was carried out in NIH3T3 cells (C). P21 mRNA expression w
ver-expression of merlin (NF2) (D, left), or after knockdown of me
A-tagged wild-type merlin, HA-tagged A518- and D518-mutant merlin
roteasome inhibitor MG-132 for 2 h. After transfection for 48 h, ectopi
y the co-expression of ectopic HA-tagged-wild-type or s
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A518-mutant-merlin and Myc-tagged p21. Immunoblot
nalyses showed strong expression of HA-merlin in the
wo co-transfected cell lines, as compared to transfected
ith wild-type or A518 merlin alone in NIH3T3 cells (lane 2,
and 4, Fig. 4C). We found that p21 mediated induction of
erlin stability was more effective by co-transfection with

he A518 merlin, a constitutively active form of merlin than
ith wild-type merlin (lane 3 and 4). Expression of wild-

ype merlin alone in the presence of MG-132, but not EST,
control inhibitor of non-proteasomal proteases, resulted

n its stabilization (lane 5 and 9). Immunoblot analyses also
howed strong expression of HA-merlin in NIH3T3 cells
hat were transfected with both the wild-type merlin and
21 and the MG-132 (lane 6), and with the active merlin
utant (A518), p21 and MG132 (lane 7), and with the

nactive merlin mutant (D518), p21, and MG132 (lane 8,
ig. 4C), implying that p21 promotes accumulation of mer-

in possibly through inhibition of the proteasome-mediated
rotein degradation in NIH3T3 cells.

Likewise, when silencing of p21 expression by p21

in the cell lines. Cells were transiently over-expressed with or without
blotting analysis in NIH3T3 cells (A), or in HSCs (B), flow cytometry

rmined by real-time PCR, normalized to GAPDH expression after the
in NIH3T3 cells (D, right). (E) NIH3T3 cells were transfected with

c-tagged p21 as indicated. Cells were either treated or untreated with
merlin proteins were assessed using anti-Myc or anti-HA antibodies.
TE

t manner
Western
as dete

rlin (NF2)
hRNAs, reduced levels of endogenous merlin was found

f1) in merlin deficient sporadic vestibular schwannomas,
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oth in NIH3T3 and HSCs (Fig. 5A, B), and increased
hosphorylation of MEK and ERK by p21 shRNA were
etected in the high cell density in NIH3T3 cells (Fig. 5C).

We then evaluated merlin (NF2) mRNA by real-time
T-PCR (qPCR) analysis to determine whether mRNA
ccumulation contributed to elevated merlin levels. In con-
rast to the large differences in protein levels, merlin (NF2)
RNA levels were modestly different between p21-trans-

ig. 4. P21 promoted merlin elevation in the cells. Cells were transie
ere measured by Western blotting analysis in NIH3T3 cells (A), or
A-tagged A518- or D518-mutant merlin and Myc-tagged p21 as indic
r non-proteasomal proteases inhibitors EST. for 2 h. After transfecti
nti-Myc antibodies (C).

ig. 5. Negative regulation of Ras signaling by merlin was partially o
hRNAs or nonsense control for 48 h, p21 were assessed by Western
rotein levels were measured in HSCs (B), the levels of merlin, p-ME

ensity in NIH3T3 cells (C). Merlin mRNA expression was determined by real-ti
f p21 (D, left), or after knockdown of p21 (D, right).
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ected cells and the control cells (Fig. 5D left). More, no
ignificant effect of p21 shRNA1 on merlin (NF2) mRNA

evel was confirmed in the cells (Fig. 5D right). Therefore
erlin levels were elevated mainly due to the protein

tabilization other than mRNA accumulation in NIH3T3
ells.

Collectively, these data indicate that there may be a
ositive induction loop between p21 and merlin and that a

expressed with or without p21 for 48 h P21 and merlin protein levels
(B). NIH3T3 cells were transfected with HA-tagged wild-type merlin,
lls were either treated or untreated with proteasome inhibitor MG-132
h, ectopic merlin and p21 proteins were assessed using anti-HA or

by knockdown of p21 in the cells. After transfected with p21-target
nalysis in low or high cell density in NIH3T3 cells (A), p21 and merlin

-ERK were assessed with or without p21 knockdown in the high cell
ntly over-
in HSCs
ated. Ce
verridden
blotting a
K and p
me PCR, normalized to GAPDH expression after the over-expression
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elicate balance must be maintained between these two
olecules to control cellular proliferation.

DISCUSSION

n this report, we show that merlin deficient sporadic VS
xhibited loss of p21. These data are in agreement with the
ode of action of merlin in the cell lines: that is it regulates
21 protein levels in both NIH3T3 and HSCs. Consistent
ith our findings that p21 suppresses cell growth through

nhibition of CDKs activities; the current study indicates
hat merlin exerts its antiproliferative effect, at least in part,
ia the induction of p21 expression. The results also led us
o suggest that the loss of p21, a negative regulator of cell
rogression, is involved in tumor formation in merlin defi-
ient Schwann cells.

Merlin is known to be a tumor suppressor by down-
egulation of Ras or Rac related signaling (Kim et al., 2002;
orrison et al., 2007; Shaw et al., 2001). However, the
echanism by which merlin controls cell proliferation has
ot been clearly defined. Here, we show that the loss of
erlin may be a fundamental event in tumor formation in

linical sporadic schwannomas patients. We further dem-
nstrate that merlin deficiency was accompanied by the

oss of p21, and the elevated cyclin D1, CDK2, CDK4
evels in sporadic schwannomas (Fig. 1A–C). These data
ndicate that merlin may be a tumor suppressor that blocks
ell cycle progression in a p21-related manner.

The causal relationship between merlin and p21 was
urther confirmed by knockdown and over-expression stud-
es pointing to a physiological role for merlin in the regu-
ation of p21 expression in both NIH3T3 and HSCs (Figs. 2
nd 3A, B). We also found that negative regulation of Ras
ignaling caused by merlin can be partially overridden by
nockdown of p21 in the high cell density (Fig. 5C). These
ata are in agreement with the observation in the merlin
eficient sporadic VS suggesting that merlin exerts its
nti-proliferative effect, at least in part, in a p21-dependent
anner.

In this study, we have found that p21 mRNA levels
ere modestly different in merlin (NF2) over-expressed or
nockdown cells compared with the control cells (Fig. 3D

eft and right). More, the presence of the proteasome in-
ibitor MG-132 was sufficient to mediate stabilization of
21 (Fig. 3E). The results led us to suggest that merlin may

ncrease p21 accumulation in a proteasome-dependent
anner.

Recently, two groups showed that over-expression of
erlin are associated with accumulation of p21 and p27

Xiao et al., 2005; Morrison et al., 2007). These are com-
arable to our observations in this study and emphasize
he importance of p21 regulation by merlin. We showed
hat p21 inhibited cell proliferation by arresting cell cycle at
he G1 (Fig. 3C), in correlation with its ability to bind CDKs
nd inhibit their activities (Fig. 2C). Taken together, we
uggest that p21 is required for merlin’s function in sup-
ressing cell proliferation.

Here, we also observed a physiological role for p21 in

he regulation of merlin expression by knockdown and
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ver-expression studies in both NIH3T3 and HSCs (Figs. 4
nd 5A, B). More, merlin (NF2) mRNA levels were mod-
stly different in p21 over-expressed or knockdown cells
ompared with the control cells (Fig. 5D, left and right). The
resence of the proteasome inhibitor MG-132, but not
ST, a control inhibitor of non-proteasomal proteases, was
ufficient to mediate stabilization of merlin (Fig. 4C).
herefore merlin levels were elevated mainly due to the
rotein stabilization other than mRNA accumulation in
IH3T3 cells. Thus, we have provided evidence for a novel
echanism in which merlin and p21 require each other to
aintain their protein levels to control cell proliferation.

Our findings here indicate that there is a positive in-
uction loop between p21 and merlin and that a fine dy-
amics must be maintained between these two molecules
o control cellular proliferation. Both merlin and p21 defects
ould cause transforming alterations leading to the devel-
pment of schwannomas. Thus, this study fills the knowl-
dge gap in the causes and detailed events in schwan-
oma development.

Schwannomas is the second most common tumor of
he CNS. The anatomical location of VS being close to
acial nerves and brain structures makes operations diffi-
ult. New treatment is needed. It is well understood that
21 suppresses cell growth. Our study here suggests that
evelopment of schwannomas may critically depend on

acking p21-induced cell-cycle arrest. These findings are
onsistent with the data of the cell lines, suggesting that
estoring p21 (waf1/cip1) functions in schwannoma cells
ay activate the cell cycle arrest. Thus, p21 (waf1/cip1) is
molecule that should be explored for its potential in

argeted gene therapy for schwannomas.

CONCLUSION

n conclusion, we have provided evidence for a novel
henotype in which both merlin and p21 require each other
o maintain their protein elevation to control cell prolifera-
ion. This growth regulatory circuit would be disrupted,
uch as in schwannomas. These data highlight the impor-
ance of further studies into the role of merlin and p21 in
oth post-translational regulation of protein expression and

ts contribution to the transformed phenotype.
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