|
NF-κB p65抗体 |
产品编号: AN365
产品包装: >40次
产品价格: 473.00元 |
|
|
|
产品简介
产品简介:
来源 |
用途 |
交叉反应性 |
抗体识别位点 |
p65分子量 |
Rabbit |
WB, IP, IF, IHC |
H, M, R |
p65 N-terminal |
~65kD |
WB,Western blot;IP,Immunoprecipitation;IF,Immunofluorescence;IHC,Immunohistochemistry.
H,human;M,mouse;R,rat.
本NF-κB p65抗体(NF-κB p65 antibody)为进口分装,用人工合成的人NF-κB p65氨基端(N-
terminal)的一段多肽进行适当修饰后免疫rabbit,然后用protein A和抗原多肽亲和柱经过两步纯化而得到的高纯度抗体。
NF-κB是一种常见的转录因子,可以被炎症因子、生长因子或趋化因子等激活。常见的炎症因子(包
括Interleukin-1β和TNF-α等)都可以激活NF-κB。NF-κB由两类亚基形成同源或异源二聚体。一类亚基包括p65(也称RelA)、RelB和C-Rel;另一类亚基包括p50和p52。最常见的NF-κB亚基组成形式为p65/p50或p65/p65。
NF-κB未被激活时和IκB-α形成一个复合物,分布在细胞浆中。在炎症因子、生长因子或趋化因子等
可以激活NF-κB的刺激存在的情况下,IκB-α会在Ser32和Ser36被磷酸化,随后被泛素-蛋白酶体途径降解。NF-κB和IκB-α解聚后,其核定位序列被暴露,从而被转运到细胞核内促进NF-κB依赖的基因转录。通过免疫染色检测NF-κB的主要亚基p65是否被转移到细胞核内,就可以判断NF-κB是否被激活。或者提取细胞核蛋白通过Western检测细胞核内p65是否增加,也可以判断NF-κB是否被激活。
本NF-κB p65抗体仅识别p65,不识别RelB、C-Rel、p50和p52。
配套提供了Western一抗稀释液,可以用于Western检测时的一抗稀释。
建议抗体使用时的稀释比例如下(实际使用时需根据抗原水平的高低作适当调整):
WB |
IP |
IF |
IHC |
1:500 |
1:20-50 |
1:200-500 |
1:200-500 |
本抗体如果用于常规的Western检测,至少可以检测40次。
包装清单:
产品编号 |
产品名称 |
包装 |
AN365-1 |
NF-κB p65抗体 |
40μl |
AN365-2 |
Western一抗稀释液 |
40ml |
- |
说明书 |
1份 |
保存条件:
NF-κB p65抗体-20℃保存,Western一抗稀释液-20℃或4℃保存,一年有效。Western一抗稀释液优先推荐4℃保存,长期不使用可以考虑-20℃保存,但冻融可能会导致出现轻微的浑浊和少量不溶物。
注意事项:
对于本抗体,Western检测时一抗要4℃缓慢摇动过夜,如果仅短时间与一抗孵育检测效果较差。
在Western实验后,请注意回收稀释的抗体。回收的抗体在进行Western实验时至少可以重复使用10
次。稀释后的抗体,包括已经使用过的稀释抗体,4℃保存。
回收后重复使用的抗体,使用方法同新鲜稀释的抗体。如果在重复使用过程中发现抗体出现轻微混
浊现象,可以10000g离心1-3分钟,取上清用于后续检测。如果回收的抗体出现明显的絮状物或长霉长菌等情况,则可以考虑废弃该抗体。
为了您的安全和健康,请穿实验服并戴一次性手套操作。
使用说明
产品图片
相关产品
相关论文
使用本产品的相关论文:
1. Yao SH, Guo WY.
Clinical significance of expr ession Hpa and NF- κB in glomeruli of idiopathic
membr
anous nephropathy.
China medical herald.2007 Oct. Vol.4 No.30.
2. Bai Y, Li Q, Yang J, Zhou X, Yin X, Zhao D.
p75(NTR) activation of NF-kappaB is involved in PrP106-126-induced apoptosis in mouse
neuroblastoma cells.
Neurosci Res. 2008 Sep;62(1):9-14. Epub 2008 May 23.
3. Zhang A, Hao S, Bi J, Bao Y, Zhang X, An L, Jiang B.
Effects of catalpol on mitochondrial function and working memory in mice after
lipopolysaccharide-induced acute systemic inflammation.
Exp Toxicol Pathol. 2009 Sep;61(5):461-9.
4. Liu HT, Li WM, Huang P, Chen WJ, Liu QS, Bai XF, Yu C, Du YG.
Chitosan oligosaccharides inhibit TNF-a-induced VCAM-1 and ICAM-1 expression in human
umbilical vein endothelial cells by blocking p38 and ERK1/2 signaling pathways
Carbohydrate Polymers.2010.
5. Hao XQ, Zhang HG, Yuan ZB, Yang DL, Hao LY, Li XH.
Prenatal exposure to lipopolysaccharide alters the intrarenal renin-angiotensin system
and renal damage in offspring rats.
Hypertens Res. 2010;33(1):76-82. Epub 2009 Nov 13.
6. Liu HT, Du YG, He JL, Chen WJ, Li WM, Yang Z, Wang YX, Yu C.
Tetramethylpyrazine inhibits production of nitric oxide and inducible nitric oxide
synthase in lipopolysaccharide-induced N9 microglial cells through blockade of MAPK and
PI3K/Akt signaling pathways, and suppression of intracellular reactive oxygen species.
J Ethnopharmacol. 2010;129(3):335-43. Epub 2010 Apr 3.
7. Liu R, Zhang L, Lan X, Li L, Zhang TT, Sun JH, Du GH.
Protection by borneol on cortical neurons against oxygen-glucose
deprivation/reperfusion:involvement of anti-oxidation and anti-inflammation through
nuclear transcription factor κappaBsignaling pathway.
Neuroscience. 2011 Mar 10;176:408-19. Epub 2010 Dec 16.
8. Lin S, Liang Y, Zhang J, Bian C, Zhou H, Guo Q, Xiong Y, Li S, Su B.
Microglial TIR-domain-containing adapter-inducing interferon-β (TRIF) deficiency
promotes retinal ganglion cell survival and axon regeneration via nuclear factor-κB.
J Neuroinflammation. 2012 Feb 24;9:39.
9. Chang J, Yang L, Kouadir M, Peng Y, Zhang S, Shi F, Zhou X, Yin X, Zhao D
Antibody-Mediated Inhibition of Integrin α5β1 Blocks Neurotoxic Prion Peptide
PrP(106-126)-Induced Activation of BV2 Microglia
J Mol Neurosci.2012 Sep;48(1):248-52.doi:10.1007/s12031-012-9821-6.Epub 2012 May 31.
10.Yu JQ, Bao W, Lei JC.
Emodin Regulates Apoptotic Pathway in Human Liver Cancer Cells.
Phytother Res. 2012 May 8.
11.Khan M, Yi F, Rasul A, Li T, Wang N, Gao H, Gao R, Ma T.
Alantolactone induces apoptosis in glioblastoma cells via GSH depletion, ROS
generation, and mitochondrialdysfunction.
IUBMB Life. 2012 Sep;64(9):783-94. doi: 10.1002/iub.1068. Epub 2012 Jul 27.
12.DangLi R, HeKong W, JiQin L, MingHua Z, WenCheng Z.
ROS-induced ZNF580 expression: a key role for H2O2/NF-κB signaling pathway in vascular
endothelialinflammation.
Mol Cell Biochem. 2012 Jan;359(1-2):183-91. doi: 10.1007/s11010-011-1013-0.
Epub 2011 Aug 10.
13.Huang Y, Zhou X, Bai Y, Yang L, Yin X, Wang Z, Zhao D.
Phagolysosome maturation of macrophages was reduced by PE_PGRS 62 protein expressing in
Mycobacteriumsmegmatis and induced in IFN-γ priming.
Vet Microbiol. 2012 Nov 9;160(1-2):117-25. doi: 10.1016/j.vetmic.2012.05.011.
Epub 2012 May 18.
14.Shi F, Yang L, Kouadir M, Yang Y, Wang J, Zhou X, Yin X, Zhao D.
The NALP3 inflammasome is involved in neurotoxic prion peptide-induced microglial
activation.
J Neuroinflammation. 2012 Jul 11;9:73. doi: 10.1186/1742-2094-9-73.
15.Kouadir M, Yang L, Tan R, Shi F, Lu Y, Zhang S, Yin X, Zhou X, Zhao D.
CD36 participates in PrP(106-126)-induced activation of microglia.
PLoS One. 2012;7(1):e30756. doi: 10.1371/journal.pone.0030756. Epub 2012 Jan 26.
16.Zhang X, Wen Z, Sun L, Wang J, Song M, Wang E, Mi X.
TRAF2 regulates the cytoplasmic/nuclear distribution of TRAF4 and its biological
function
in breast cancer cells.
Biochem Biophys Res Commun.2013 Jun 28;436(2):344-8.doi:10.1016/j.bbrc.2013.05.107.
Epub 2013 Jun 4.
17.Cao M, Wang P, Sun C, He W, Wang F.
Amelioration of IFN-γ and TNF-α-induced intestinal epithelial barrier dysfunction by
berberine via suppression of MLCK-MLC phosphorylation signaling pathway.
PLoS One. 2013 May 3;8(5):e61944. doi: 10.1371/journal.pone.0061944. Print 2013.
18.Hu FY, Wu C, Li Y, Xu K, Wang WJ, Cao H, Tian XL.
AGGF1 is a novel anti-inflammatory factor associated with TNF-α-induced endothelial
activation.
Cell Signal. 2013 Aug;25(8):1645-53. doi: 10.1016/j.cellsig.2013.04.007.
Epub 2013 Apr 28.
19.Cao ZH, Yin WD, Zheng QY, Feng SL, Xu GL, Zhang KQ.
Caspase-3 is Involved in IFN-γ-and TNF-α-Mediated MIN6 Cells Apoptosis via NF-κB/Bcl-2
Pathway.
Cell Biochem Biophys. 2013 May 22. [Epub ahead of print].
|